Bakken Crude Oil & Response Considerations

EPA Region 10 Emergency Management Program Fall 2013 OSC Training

Basics of Crude Oil - Quick Review

- Crude Oil very complex mixture of hundreds, even thousands of chemical compounds
- Chemical composition can vary tremendously
 - From different producing regions
 - Possible even within a particular formation

Basics of Crude Oil - Quick Review

- Hydrocarbons are most abundant compounds in crude oil
 - Carbon (80 87%)
 - Hydrogen (10 15%)
- Non-hydrocarbon compounds, typically <10%
 - Sulfur (0 -10%)
 - Nitrogen (0 1%)
 - Oxygen (0 5%)
 - Trace Metals
 - V, Ni, Fe, Al, Na, Ca, Cu, U

Basics of Crude Oil – Quick Review

Non-hydrocarbon Constituents

- Sulfur Compounds
 - Very important non-hydrocarbon compounds
 - Hydrogen sulfide, mercaptans, sulfonic acids
- Nitrogen Compounds
 - Present in all crude oils
 - Pyridines, quinolines, pyrroles, etc.
- Oxygen compounds (found in distillation fractions)
 - Organic acids, Alcohols, ketones, esters, phenols

Basics of Crude Oil – Quick Review Terminology

- Light Crudes have more "light ends", such as gasoline, naptha, and kerosine fractions
- Heavy Crudes have more heavy ends such as asphaltenes (higher molecular weight)
- Sweet, Sour Crudes: refer to amount of sulfur present
 - Sweet < 0.5% sulfur
 - Sour >0.5 % sulfur, Safety Issues
 - H2S danger, air monitoring needs

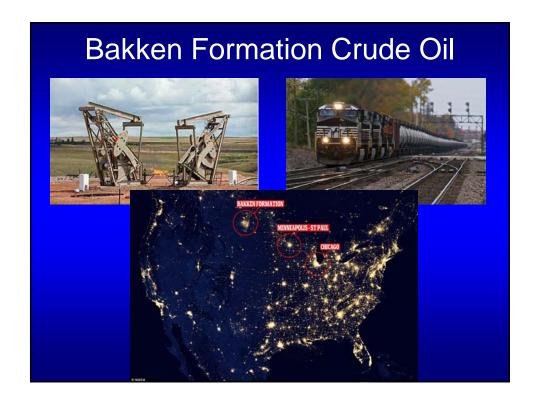
Basics of Crude Oil

Terminology

- API Gravity a specific scale, created by API, for measuring the relative density of petroleum liquids, expressed in degrees.
 - API Gravity = (141.5/Sp.Gr at 60° F) 131.5
- Rule of Thumb
 - Higher API Gravity = lighter the crude, less viscous, more light ends
 - Heavy Crudes ~ API 18°
 - Light Crudes ~ API 38° 44°

Group 2 Oils: Diesel-like Products and Light Crude Oils

- No. 2 fuel oil
- Diesel fuel
- Home heating oil
- Jet fuels
- Kerosene
- West Texas crude
- Bakken crude



Group 2 Oil: Diesel-like Products and Light Crude Oils

- Moderately volatile
- Refined products can evaporate little to no residue
- Crude oils do have considerable remaining oil and residue after evaporation
- Low to moderate viscosity; spreads rapidly into thin slicks
- Specific gravity is 0.80-0.85; API 35-45

Group 2 Oils: Diesel-like Products and Light Crude Oils

- Crude oils can form stable emulsions
 - Weathered/mousse
- Tend to penetrate substrates; fresh spills are adhesive
- Moderate to high acute toxicity to biota; product-specific toxicity is related to type and amount of aromatic hydrocarbons

Bakken Crude Oil

- Bakken Formation underlies over 200,000 square miles in Williston Basin of MT, ND, Saskatchewan
- Recoverable reserves up to 24 Billion bbl

Properties & Response Considerations

- Properties
- Spill Response

CENTROLL FRODUCT AND COMPANY EXCEPTION

LICIAMCAL PRODUCT AND COMPANY EXCEPTION

Product bleeriffer:
Basan O, Basan Code
Basan D, Basan C, Basan Code
Basan D, Basan C, Basan C,

Cenovus MSDS

Bakken Crude Oil Properties

- Light crude Class 2 Oil
 - same class as Diesel #1 Fuel Oil
- API gravity ranging from 40° to 42°
- Sulfur content ranges from 0.17- 0.20%
 - Bakken is a "Sweet" crude
 - Reports of some sour recent shipments due to crude blending
- Benzene content < 0.5% by weight

Bakken Crude Oil Properties

- Sp. gr. of Bakken is 0.7 0.8, Floats on water
 - Sp. gr. weight of oil/ weight of "pure" water
 - $10 \,^{\circ}\text{API} = 1.00 \,\text{s.g.}$ or pure water at $60 \,^{\circ}\text{F}$
- Vapor Density 1.5 3.0, heavier than air
 - Vapors can hug ground and travel to an ignition source
- Vapor Pressure moderate, mmHg 280 360 @ 60° F
 - Water 12.5 mmHg @ 60° F
 - Gasoline 400 mmHg @ 60° F

Bakken Crude Oil Properties

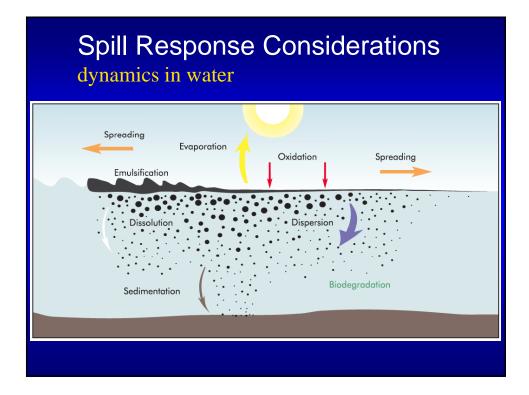
- Flammable (Class 3)
- Sensitive to static discharge
- Explosive Limits variable:
 - LEL 0.4%
 - UEL 8 15%
- Flash point 40° to 100° C
- Stable
- Incompatible with strong oxidizing agents

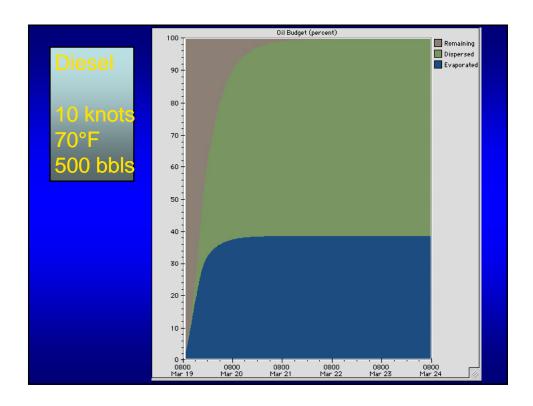
Properties & Response Considerations

- Properties
- Spill Response
- Safety

Spill Response Considerations

- Behavior in River
 - Floats
 - Middle of fast river
 - When slowing, will go to bank in curve
 - Stranding on shorelines
 - Entrainment
 - Binding with sediment
 - Dissolution
 - Weathering, mousse development

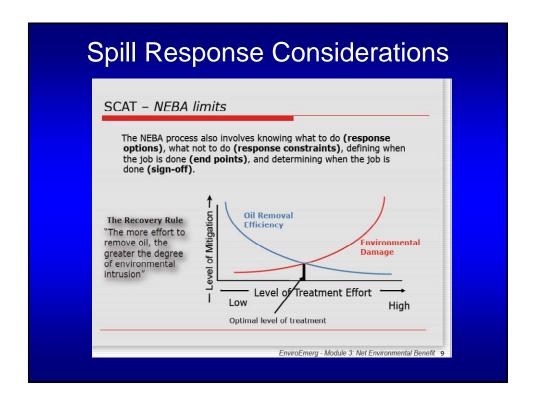




Response Considerations Evaporation


- Key factor for light crudes, including Bakken
- Can be the most significant "loss" mechanism early in a spill
- Small impact on density
- Significant impact on viscosity
- Function of: oil type, environmental factors
 - Crude oil up to 25% loss in 24 hours
 - Gasoline up to 50% loss in 10 minutes
 - No. 6 fuel oil 5-10% loss in 40 hours

Oil Spill Response Techniques


- Physical Measures to be deployed –Stop it, Boom it, Suck it up
 - Boom it (mechanical and sorbent boom)
 - Put in underflow and weir dams
 - Flushing, soil washing (water, leaf blowers, etc.)
 - Sorbent material (pads, pompoms, etc.)
 - Suck it up Vacuum Trucks
 - Dispose of it correctly
 - Soil and vegetation excavation, bioremediation

Spill Response Considerations Safety

- PPE
 - Level D most often, but be prepared for upgrade
- Air monitoring
 - Explosive Levels
 - H2S
 - Benzene
 - Organic vapors
 - Petroleum Hydrocarbons
- Equipment considerations

Exposure Guidelines			
Component	ACGIH	NIOSH	OSHA
Petroleum (8002-05-9)	Not established	CEIL: 1800 mg/m3 TWA: 350 mg/m3	Not established
Hydrogen sulfide (7783-06-4)	TWA: 1 ppm STEL: 5 ppm	CEIL: 10 ppm	CEIL: 20 ppm
Benzene (71-43-2)	TWA: 0.5 ppm STEL: 2.5 ppm	TWA: 0.1 ppm STEL: 1 ppm	TWA: 1 ppm STEL: 5 ppm
Ethylbenzene (100-41-4)	TWA: 20 ppm	TWA: 100 ppm STEL: 125 ppm	TWA: 100 ppm
Toluene (108-88-3)	TWA: 20 ppm	TWA: 100 ppm STEL: 150 ppm	TWA: 200 ppm CEIL: 500 ppm

Cleanup Endpoints

- Cleanup endpoints can be:
 - Qualitative which are based primarily on visual, olfactory, or tactile observations and do not necessarily require collection of analytical chemistry data
 - Quantitative which rely on measurements or quantitative data, as opposed to qualitative data such as categorical observations (e.g., sheen or no sheen)

Examples of Qualitative Cleanup Endpoints

- There is no longer any detectable constituent or compound of concern present on the water, adjoining shorelines, or places where it is likely to reach the water again
- Further removal operations would cause more environmental harm than the constituent or compound of concern to be removed
- Cleanup measures would be excessively costly in view of their insignificant contribution to minimizing a threat to the public health or welfare, or the environment

Examples of Quantitative Cleanup Endpoints

- Constituent or compound of concern on surface water, groundwater, soil, or sediment does not exceed background concentrations for the constituent or compound of concern
- Constituent or compound of concern of concern on surface water, groundwater, soil, or sediment does not exceed predetermined concentrations for the constituent or compound of concern

Issues Affecting the Selection Of Endpoints

- Type and amount of constituent or compound spilled
- Type of shoreline
- Value of habitat or use of the segment and the timing of that use
- Technical and operational feasibility of cleanup activities
- Anticipated rate of natural attenuation
- Environmental influences such as weather
- Perceptions of risk

Practical Considerations for Achieving Cleanup

- Type and amount of constituent or compound spilled
- Environmental sensitivities
- Consultation
- Widely varying cleanup standards

Practical Considerations for Achieving Cleanup . . .

- Long-term deployment of absorbent materials
- Not all spilled constituent or compound oil will be recovered
- Weather
- Natural attenuation

Practical Considerations for Determining When the Cleanup is Complete When Not All Spilled Constituent or Product is Recoverable

- Technical and operational feasibility of investigation and cleanup
- Is there a balance between cost in relation to the added degree of protection or reduction of risk afforded by additional cleanup?
- Is there a state or other entity that has the capability to assume responsibility for the cleanup action?
- Anticipated rate of natural removal processes

